We develop a novel full-Bayesian approach for multiple correlated precision matrices, called multiple Graphical Horseshoe (mGHS). The proposed approach relies on a novel multivariate shrinkage prior based on the Horseshoe prior that borrows strength and shares sparsity patterns across groups, improving posterior edge selection when the precision matrices are similar. On the other hand, there is no loss of performance when the groups are independent. Moreover, mGHS provides a similarity matrix estimate, useful for understanding network similarities across groups. We implement an efficient Metropolis-within-Gibbs for posterior inference; specifically, local variance parameters are updated via a novel and efficient modified rejection sampling algorithm that samples from a three-parameter Gamma distribution. The method scales well with respect to the number of variables and provides one of the fastest full-Bayesian approaches for the estimation of multiple precision matrices. Finally, edge selection is performed with a novel approach based on model cuts. We empirically demonstrate that mGHS outperforms competing approaches through both simulation studies and an application to a bike-sharing dataset.


翻译:我们为多个相关精密矩阵开发了新型全巴耶式全方位方法,称为多重图形马蹄(MGHS) 。 提议的方法依赖于基于马蹄(Horsehoe before strange) 之前的新的多变缩缩法, 前者在各组间借用强度和共享聚度模式, 后者在精确矩阵相似时改进后边缘选择。 另一方面, 当组间独立时, 其性能没有损失。 此外, 兆赫( mGHS) 提供了相似性矩阵估计, 有助于理解各组间网络的相似性。 我们实施了高效的大都会- 内 Gibbbs, 用于事后推断; 具体地, 本地差异参数通过新颖而高效的修改的拒绝采样法更新, 样本来自3个参数 Gamma 分布。 有关变量数量的方法比例, 提供了最快的全巴耶斯方法之一, 用于估算多个精准矩阵。 最后, 以基于模型切割的新方法进行边缘选择。 我们从经验上证明, MGHS 超越了通过模拟研究和自行车共享数据集应用的竞合方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员