The iterated conditional sequential Monte Carlo (i-CSMC) algorithm from Andrieu, Doucet and Holenstein (2010) is an MCMC approach for efficiently sampling from the joint posterior distribution of the $T$ latent states in challenging time-series models, e.g. in non-linear or non-Gaussian state-space models. It is also the main ingredient in particle Gibbs samplers which infer unknown model parameters alongside the latent states. In this work, we first prove that the i-CSMC algorithm suffers from a curse of dimension in the dimension of the states, $D$: it breaks down unless the number of samples ("particles"), $N$, proposed by the algorithm grows exponentially with $D$. Then, we present a novel "local" version of the algorithm which proposes particles using Gaussian random-walk moves that are suitably scaled with $D$. We prove that this iterated random-walk conditional sequential Monte Carlo (i-RW-CSMC) algorithm avoids the curse of dimension: for arbitrary $N$, its acceptance rates and expected squared jumping distance converge to non-trivial limits as $D \to \infty$. If $T = N = 1$, our proposed algorithm reduces to a Metropolis--Hastings or Barker's algorithm with Gaussian random-walk moves and we recover the well known scaling limits for such algorithms.


翻译:Andrieu、Doucet和Holenstein (2010年) 的连续连续不连续的连续连续蒙特卡洛(i-CSMC)算法(i-CSMC) 是一种MCMC方法,用于在具有挑战性的时间序列模型中,例如非线性或非加西南州-空间模型中,以具有挑战性的时间序列模型,从美元潜在国家的联合后座分布中,对美元潜在国家的联合后座分布进行高效取样。这也是粒子Gibbs采样器中的主要成分,在潜伏状态中将未知的模型参数推至相邻。在这项工作中,我们首先证明i-CSMC算法受到州层面范围范围的诅咒,即$D$:除非由算法建议的样本数量(“粒子”)、美元(N$)联合后,该算出一个“本地”的算法,其中提出使用高尔斯随机行移动的粒子,以美元适当按比例缩放宽。 我们证明这种随机行的随机行走随机按顺序(i-RW-CMC)算算算算算算算算法避免了维值的诅咒:任意值: $,其接受率和预期的滚动幅度以美元递增至1美元=美元。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器学习线性代数速查
机器学习研究会
18+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员