In this paper, we address the task of interacting with dynamic environments where the changes in the environment are independent of the agent. We study this through the context of trapping a moving ball with a UR5 robotic arm. Our key contribution is an approach to utilize a static planner for dynamic tasks using a Dynamic Planning add-on; that is, if we can successfully solve a task with a static target, then our approach can solve the same task when the target is moving. Our approach has three key components: an off-the-shelf static planner, a trajectory forecasting network, and a network to predict robot's estimated time of arrival at any location. We demonstrate the generalization of our approach across environments. More information and videos at https://mlevy2525.github.io/DynamicAddOn.
翻译:在本文中,我们处理的是与动态环境互动的任务,环境变化与代理人无关。我们通过用UR5机器人臂圈住一个移动球来研究这一问题。我们的主要贡献是利用动态规划添加来利用静态规划器执行动态任务;也就是说,如果我们能够成功地用静态目标解决任务,那么我们的方法就可以在目标移动时解决同样的任务。我们的方法有三个关键组成部分:现成静态规划器、轨迹预测网络和预测机器人到达任何地点的估计时间的网络。我们展示了我们跨环境的通用方法。更多的信息和视频见https://mlevy2525.github.io/DynamicAddOn。