Artificial intelligence is undergoing a profound transition from a computational instrument to an autonomous originator of scientific knowledge. This emerging paradigm, the AI scientist, is architected to emulate the complete scientific workflow-from initial hypothesis generation to the final synthesis of publishable findings-thereby promising to fundamentally reshape the pace and scale of discovery. However, the rapid and unstructured proliferation of these systems has created a fragmented research landscape, obscuring overarching methodological principles and developmental trends. This survey provides a systematic and comprehensive synthesis of this domain by introducing a unified, six-stage methodological framework that deconstructs the end-to-end scientific process into: Literature Review, Idea Generation, Experimental Preparation, Experimental Execution, Scientific Writing, and Paper Generation. Through this analytical lens, we chart the field's evolution from early Foundational Modules (2022-2023) to integrated Closed-Loop Systems (2024), and finally to the current frontier of Scalability, Impact, and Human-AI Collaboration (2025-present). By rigorously synthesizing these developments, this survey not only clarifies the current state of autonomous science but also provides a critical roadmap for overcoming remaining challenges in robustness and governance, ultimately guiding the next generation of systems toward becoming trustworthy and indispensable partners in human scientific inquiry.


翻译:人工智能正经历从计算工具向科学知识自主创造者的深刻转变。这一新兴范式——AI科学家——旨在模拟完整的科学工作流程,从初始假设生成到最终可发表成果的综合,从而有望从根本上重塑科学发现的节奏与规模。然而,这些系统的快速且无序的扩散导致了研究领域的碎片化,掩盖了宏观的方法论原则和发展趋势。本综述通过引入一个统一的六阶段方法论框架,对该领域进行了系统而全面的综合梳理,该框架将端到端的科学过程解构为:文献综述、想法生成、实验准备、实验执行、科学写作与论文生成。通过这一分析视角,我们描绘了该领域从早期基础模块(2022-2023年)到集成闭环系统(2024年),再到当前可扩展性、影响力及人机协作前沿(2025年至今)的演进历程。通过严谨综合这些发展,本综述不仅阐明了自主科学的当前状态,还为克服鲁棒性与治理方面的剩余挑战提供了关键路线图,最终引导下一代系统成为人类科学探究中可信赖且不可或缺的合作伙伴。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2023年4月24日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
103+阅读 · 2021年6月8日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
15+阅读 · 2023年4月24日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
103+阅读 · 2021年6月8日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员