Automatic Speech Recognition (ASR) systems are evaluated using Word Error Rate (WER), which is calculated by comparing the number of errors between the ground truth and the transcription of the ASR system. This calculation, however, requires manual transcription of the speech signal to obtain the ground truth. Since transcribing audio signals is a costly process, Automatic WER Evaluation (e-WER) methods have been developed to automatically predict the WER of a speech system by only relying on the transcription and the speech signal features. While WER is a continuous variable, previous works have shown that positing e-WER as a classification problem is more effective than regression. However, while converting to a classification setting, these approaches suffer from heavy class imbalance. In this paper, we propose a new balanced paradigm for e-WER in a classification setting. Within this paradigm, we also propose WER-BERT, a BERT based architecture with speech features for e-WER. Furthermore, we introduce a distance loss function to tackle the ordinal nature of e-WER classification. The proposed approach and paradigm are evaluated on the Librispeech dataset and a commercial (black box) ASR system, Google Cloud's Speech-to-Text API. The results and experiments demonstrate that WER-BERT establishes a new state-of-the-art in automatic WER estimation.


翻译:自动语音识别(ASR)系统使用Word 错误率(WER)来评估语音识别(ASR)系统。WER是一个连续变量,而以前的工作显示,将e-WER作为分类问题比回归更有效。然而,在转换为分类设置时,这些方法存在严重的阶级不平衡。在本文中,我们提议在分类设置中为e-WER提供一个新的平衡模式。在这个模式中,我们还提议WER-BERT(e-WERT),一个基于语音特征的BERT架构。此外,我们引入了远程损失功能,以解决e-WER分类的正常性质。在Librispeech数据设置和商业上对e-WER-SERAVA-AVA-SERAAAAA-CRAVA-BAVERAVAVAFLA-WERAVERABLLA AS AS ASLARS-WERARS AR AS AS AR-WERADRI ASU AR ASULOLI AR AR ASUDRIDRI AR AR AR AS AR AR ASUDRI AR AR ARB ARB AS AS AS AS AS AR ASU AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AS AR AR AR AS AS AR AR AR AR AR AS 。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
最新《Transformers模型》教程,64页ppt
专知会员服务
320+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
320+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Top
微信扫码咨询专知VIP会员