This paper describes an end-to-end solution for the relationship prediction task in heterogeneous, multi-relational graphs. We particularly address two building blocks in the pipeline, namely heterogeneous graph representation learning and negative sampling. Existing message passing-based graph neural networks use edges either for graph traversal and/or selection of message encoding functions. Ignoring the edge semantics could have severe repercussions on the quality of embeddings, especially when dealing with two nodes having multiple relations. Furthermore, the expressivity of the learned representation depends on the quality of negative samples used during training. Although existing hard negative sampling techniques can identify challenging negative relationships for optimization, new techniques are required to control false negatives during training as false negatives could corrupt the learning process. To address these issues, first, we propose RelGNN -- a message passing-based heterogeneous graph attention model. In particular, RelGNN generates the states of different relations and leverages them along with the node states to weigh the messages. RelGNN also adopts a self-attention mechanism to balance the importance of attribute features and topological features for generating the final entity embeddings. Second, we introduce a parameter-free negative sampling technique -- adaptive self-adversarial (ASA) negative sampling. ASA reduces the false-negative rate by leveraging positive relationships to effectively guide the identification of true negative samples. Our experimental evaluation demonstrates that RelGNN optimized by ASA for relationship prediction improves state-of-the-art performance across established benchmarks as well as on a real industrial dataset.


翻译:本文描述了多种多关系图中关系预测任务的一个端对端解决方案。 我们特别处理管道中两个构件, 即混杂图形代表制学习和负面抽样。 现有信息传递基图形神经网络在图形穿行和/或选择信息编码功能时使用边缘。 忽视边缘语义可能对嵌入质量产生严重影响, 特别是在处理具有多重关系的两个节点时。 此外, 所学代表性的直观度取决于培训中使用的负面样本的质量。 尽管现有的硬性负抽样技术可以确定挑战性优化的负面关系,但需要新技术来控制培训期间的虚假负值,因为虚假负值会腐蚀学习过程。 首先, 我们提议RelGNNN( 信息传递基于信息传递的混合图形关注模式) 可能会对嵌入质量产生严重影响, 特别是在处理具有多重关系的两个节点时。 RelGNNN( RelGNN) 也采用自我保存机制, 平衡属性特征和表层特征的重要性, 以最终实体嵌入的反向性al- SA( ASA ) 引入一个自定义的自我定位的自我定位, 通过自我定位, 通过自我定位的自我定位, 通过自我定位的自我定位评估, 将自我定位, 通过自我定位, 自我定位, 自我定位, 将自我定位, 自我定位的自我定位的自我定位的定位, 将自我定位, 通过自我定位的校验算制导制导制导制为自我定位的自我定位的自我定位, 将自我定位, 通过自我定位, 通过自我定位, 自我定位, 自我定位, 通过自我定位的自我定位, 自我定位, 通过自我定位, 通过自我定位, 通过自我定位, 通过自我定位的自我定位的自我定位的自我定位的自我定位, 自我定位的自我定位, 自我定位的自我定位的自我定位的自我定位的定位的自我定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的定位的自我定位的自我定位的定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的自我定位的定位的定位的定位的自我定位的定位的

1
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
119+阅读 · 2020年7月22日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年4月8日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
3+阅读 · 2018年4月10日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员