Diverse regularization techniques have been developed such as L2 regularization, Dropout, DisturbLabel (DL) to prevent overfitting. DL, a newcomer on the scene, regularizes the loss layer by flipping a small share of the target labels at random and training the neural network on this distorted data so as to not learn the training data. It is observed that high confidence labels during training cause the overfitting problem and DL selects disturb labels at random regardless of the confidence of labels. To solve this shortcoming of DL, we propose Directional DisturbLabel (DDL) a novel regularization technique that makes use of the class probabilities to infer the confident labels and using these labels to regularize the model. This active regularization makes use of the model behavior during training to regularize it in a more directed manner. To address regression problems, we also propose DisturbValue (DV), and DisturbError (DE). DE uses only predefined confident labels to disturb target values. DV injects noise into a portion of target values at random similar to DL. In this paper, 6 and 8 datasets are used to validate the robustness of our methods in classification and regression tasks respectively. Finally, we demonstrate that our methods are either comparable to or outperform DisturbLabel, L2 regularization, and Dropout. Also, we achieve the best performance in more than half the datasets by combining our methods with either L2 regularization or Dropout.


翻译:已经开发了多种正规化技术, 如 L2 正规化、 辍学、 干扰拉贝尔 (DL) 等, 以防止过度配置 。 DL, 现场的新来者 DL, 通过随机翻转一小部分目标标签来规范损失层, 并训练神经网络使用这种扭曲的数据, 从而避免学习培训数据 。 发现培训期间的高度信任标签导致过度配置问题, DL 随机选择标签 。 为了解决 DL 的缺陷, 我们建议 DL 退出 DDL (DDL) 是一种新型的正规化技术, 利用类的退化概率来推断信心标签, 并使用这些标签来规范模式。 此项积极的正规化在培训期间使用模型行为来更直接地规范数据 。 为了解决回归问题, 我们还提议 DuturbValue (DVV) 和 DusturbError (DE) 使用比我们定义的可靠标签来干扰目标值。 DV 将噪音注入目标值的一部分, 与 DL 相似的随机性定义值相似。 。 在本文中, 使用 和 LBregil 的半 格式 的校验校验中, 和 L 数据 分别 使用 。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年10月11日
专知会员服务
30+阅读 · 2021年4月5日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
56+阅读 · 2020年2月10日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月7日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员