Penalty methods have proven to be particularly effective for achieving the required $C^1$-continuity in the context of multi-patch isogeometric Kirchhoff-Love shells. Due to their conceptual simplicity, these algorithms are readily applicable to the displacement and rotational coupling of trimmed, non-conforming surfaces. However, the accuracy of the resulting solution depends heavily on the choice of penalty parameters. Furthermore, the selection of these coefficients is generally problem-dependent and is based on a heuristic approach. Moreover, developing a penalty-like procedure that avoids interface locking while retaining optimal accuracy is still an open question. This work focuses on these challenges. In particular, we devise a penalty-like strategy based on the $L^2$-projection of displacement and rotational coupling terms onto a degree-reduced spline space defined on the corresponding interface. Additionally, the penalty factors are completely defined by the problem setup and are constructed to ensure optimality of the method. To demonstrate this, we asses the performance of the proposed numerical framework on a series of non-trimmed and trimmed multi-patch benchmarks discretized by non-conforming meshes. We systematically observe a significant gain of accuracy per degree-of-freedom and no interface locking phenomena compared to other penalty-like approaches. Lastly, we perform a static shell analysis of a complex engineering structure, namely the blade of a wind turbine.


翻译:事实证明,刑罚方法对于在多批同源同源同源同源同源同源的贝壳中达到所要求的1美元(C$1美元)的连续性特别有效。由于这些算法在概念上简单,因此这些算法很容易适用于变换和交替的曲折、不兼容的表面;然而,由此产生的解决办法的准确性在很大程度上取决于刑罚参数的选择;此外,这些系数的选择一般取决于问题,是以超速方法为基础的。此外,制定一种类似惩罚的程序,在保持最佳准确性的同时避免交错锁住,这仍然是一个尚未解决的问题。这项工作侧重于这些挑战。特别是,我们根据2美元对流离位的预测和轮换条件的递合,设计一种类似于罚款的策略,在相应界面上确定一个降级的螺旋空间。此外,惩罚因素是由问题设置的完全界定的,并且是为了确保方法的最佳性。为了证明这一点,我们评估了拟议的数字框架在一系列不固定和三基结的混合的多端结构上的表现。我们用不系统化的、不固定的平流、不固定的平流的平流的比级结构来进行一个系统化的固定的固定的精确的精确的精确分析。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
迁移学习简明教程,11页ppt
专知会员服务
105+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员