The integration of the global Photovoltaic (PV) market with real time data-loggers has enabled large scale PV data analytical pipelines for power forecasting and long-term reliability assessment of PV fleets. Nevertheless, the performance of PV data analysis heavily depends on the quality of PV timeseries data. This paper proposes a novel Spatio-Temporal Denoising Graph Autoencoder (STD-GAE) framework to impute missing PV Power Data. STD-GAE exploits temporal correlation, spatial coherence, and value dependencies from domain knowledge to recover missing data. Experimental results show that STD-GAE can achieve a gain of 43.14% in imputation accuracy and remains less sensitive to missing rate, different seasons, and missing scenarios, compared with state-of-the-art data imputation methods such as MIDA and LRTC-TNN.
翻译:将全球光电市场与实时数据采集器整合在一起,使得能够进行大规模光电数据分析管道,以便进行电力预报和对光电船队进行长期可靠性评估,然而,光电数据分析的性能在很大程度上取决于光电时间序列数据的质量。本文提出一个新的空间-时代热电图自动编码(STD-GAE)框架,以估算缺失的光电数据。 STD-GAE利用时间相关性、空间一致性和从域知识中获取的价值依赖性来恢复缺失的数据。实验结果显示,与MIDA和LRTC-TNN等最新数据估算方法相比,STD-GAE在估算准确性方面可以取得43.14%的收益,对缺失速度、不同季节和缺失情景仍然不太敏感。