We study the problem of fair sequential decision making given voter preferences. In each round, a decision rule must choose a decision from a set of alternatives where each voter reports which of these alternatives they approve. Instead of going with the most popular choice in each round, we aim for proportional representation across rounds, using axioms inspired by the multi-winner voting literature. The axioms require that every group of $\alpha\%$ of the voters that agrees in every round (i.e., approves a common alternative), must approve at least $\alpha\%$ of the decisions. A stronger version of the axioms requires that every group of $\alpha\%$ of the voters that agrees in a $\beta$ fraction of rounds must approve $\beta\cdot\alpha\%$ of the decisions. We show that three attractive voting rules satisfy axioms of this style. One of them (Sequential Phragm\'en) makes its decisions online, and the other two satisfy strengthened versions of the axioms but make decisions semi-online (Method of Equal Shares) or fully offline (Proportional Approval Voting). We present empirical results for these rules based on synthetic data and U.S. political elections. We also run experiments using the moral machine dataset about ethical dilemmas: We train preference models on user responses from different countries and let the models cast votes. We find that aggregating these votes using our rules leads to a more equal utility distribution across demographics than making decisions using a single global preference model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
43+阅读 · 2024年1月25日
Arxiv
45+阅读 · 2022年9月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员