Spiking neural networks (SNNs) are well known as the brain-inspired models with high computing efficiency, due to a key component that they utilize spikes as information units, close to the biological neural systems. Although spiking based models are energy efficient by taking advantage of discrete spike signals, their performance is limited by current network structures and their training methods. As discrete signals, typical SNNs cannot apply the gradient descent rules directly into parameters adjustment as artificial neural networks (ANNs). Aiming at this limitation, here we propose a novel method of constructing deep SNN models with knowledge distillation (KD) that uses ANN as teacher model and SNN as student model. Through ANN-SNN joint training algorithm, the student SNN model can learn rich feature information from the teacher ANN model through the KD method, yet it avoids training SNN from scratch when communicating with non-differentiable spikes. Our method can not only build a more efficient deep spiking structure feasibly and reasonably, but use few time steps to train whole model compared to direct training or ANN to SNN methods. More importantly, it has a superb ability of noise immunity for various types of artificial noises and natural signals. The proposed novel method provides efficient ways to improve the performance of SNN through constructing deeper structures in a high-throughput fashion, with potential usage for light and efficient brain-inspired computing of practical scenarios.


翻译:脉冲神经网络(SNNs)因利用脉冲作为信息单元而类似于生物神经系统,因而被认为是高计算效率的模型。但其表现受到当前网络结构和训练方法的限制。由于脉冲为离散信号,典型的SNNs没法像人工神经网络(ANNs)那样直接应用梯度下降规则进行参数调整。针对此限制,我们提出了一种新方法,用知识蒸馏(KD)将人工神经网络作为教师模型,脉冲神经网络作为学生模型,构建深度脉冲神经网络。通过ANN-SNN联合训练算法,学生SNN模型可以通过知识蒸馏方法从教师ANN模型中学习到丰富的特征信息,避免了学生SNN直接使用非可微分的脉冲进行训练。相比直接训练或ANN-to-SNN方法,我们的方法可以更可行、更合理地构建更有效的深度SNN结构,并在很短的时间内进行整体训练。更重要的是,该方法具有出色的抗噪声能力,可适用于各种人造噪声和自然信号。所提出的新方法提供了高吞吐量的构建更深度结构的高效方式,具有潜在的应用于轻量级、高效的启发式计算场景。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
COLING 2022 | Pro-KD:循序渐进的平滑知识蒸馏
PaperWeekly
1+阅读 · 2022年10月5日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
19+阅读 · 2019年11月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
COLING 2022 | Pro-KD:循序渐进的平滑知识蒸馏
PaperWeekly
1+阅读 · 2022年10月5日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员