Clinical decision-making depends on expert reasoning, which is guided by standardized, evidence-based guidelines. However, translating these guidelines into automated clinical decision support systems risks inaccuracy and importantly, loss of nuance. We share an application architecture, the Large Language Expert (LLE), that combines the flexibility and power of Large Language Models (LLMs) with the interpretability, explainability, and reliability of Expert Systems. LLMs help address key challenges of Expert Systems, such as integrating and codifying knowledge, and data normalization. Conversely, an Expert System-like approach helps overcome challenges with LLMs, including hallucinations, atomic and inexpensive updates, and testability. To highlight the power of the Large Language Expert (LLE) system, we built an LLE to assist with the workup of patients newly diagnosed with cancer. Timely initiation of cancer treatment is critical for optimal patient outcomes. However, increasing complexity in diagnostic recommendations has made it difficult for primary care physicians to ensure their patients have completed the necessary workup before their first visit with an oncologist. As with many real-world clinical tasks, these workups require the analysis of unstructured health records and the application of nuanced clinical decision logic. In this study, we describe the design & evaluation of an LLE system built to rapidly identify and suggest the correct diagnostic workup. The system demonstrated a high degree of clinical-level accuracy (>95%) and effectively addressed gaps identified in real-world data from breast and colon cancer patients at a large academic center.


翻译:暂无翻译

1
下载
关闭预览

相关内容

Locally linear embedding(LLE) 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员