We use the tridiagonal representation approach to solve the radial Schr\"odinger equation for an inverse power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.


翻译:我们使用三对角表示法来解决弧形 Schr\“ odinger 方程式, 以反向功率法潜能, 即结合了石度和性别度, 以及所有角时。 夸度单数的振幅大于性别的振幅, 但信号是负的和正的。 事实证明, 系统有一定数量的约束状态, 由两个单度振幅的较大比例决定 。 解决方案是用贝塞尔多球形书写成的、 有限、 方形的、 方形的、 方形的函数序列 。

0
下载
关闭预览

相关内容

Momenta 定位于打造自动驾驶大脑,核心技术是基于深度学习的环境感知、高精地图和驾驶决策算法,产品包括不同级别的自动驾驶方案,以及衍生出的大数据服务。Momenta 的战略是量产自动驾驶(Mpilot)与完全无人驾驶(MSD)两条腿走路,通过数据、数据驱动算法和两者之间的迭代闭环,推动自动驾驶技术落地量产,并最终实现无人驾驶。
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员