Knaster-Tarski's theorem, characterising the greatest fixpoint of a monotone function over a complete lattice as the largest post-fixpoint, naturally leads to the so-called coinduction proof principle for showing that some element is below the greatest fixpoint (e.g., for providing bisimilarity witnesses). The dual principle, used for showing that an element is above the least fixpoint, is related to inductive invariants. In this paper we provide proof rules which are similar in spirit but for showing that an element is above the greatest fixpoint or, dually, below the least fixpoint. The theory is developed for non-expansive monotone functions on suitable lattices of the form $\mathbb{M}^Y$, where $Y$ is a finite set and $\mathbb{M}$ an MV-algebra, and it is based on the construction of (finitary) approximations of the original functions. We show that our theory applies to a wide range of examples, including termination probabilities, metric transition systems, behavioural distances for probabilistic automata and bisimilarity. Moreover it allows us to determine original algorithms for solving simple stochastic games.


翻译:Knaster- Tarski 的定理, 将一个单调函数的最大固定点描述为一个完整的固定点的最大固定点, 是最大的后定点, 自然导致所谓的点数证明原则, 以显示某些元素低于最大固定点( 例如, 提供两个相似的证人 ) 。 用于显示一个元素高于最小固定点的双重原则 与诱导性变量有关。 在本文中, 我们提供了在精神上相似但显示一个元素高于最大固定点或双倍低于最小固定点的校正规则 。 该理论是针对表格$\ mathbb{ M ⁇ Y$( 提供两个不同的证人 ) 中适合的顶点的非爆炸性单调函数制定的 。 用于显示元素高于最大固定点( 确定) 和 $\ mathb{ M} 用于显示一个最小固定点的元素的双重原则 。 它基于原始功能的( 确定) 近似性) 的构造。 我们显示我们的理论适用于一系列广泛的例子, 包括终止性概率、 度过渡性过渡系统 、 行为距离, 使原始的游戏能够进行原始的亚性 。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月17日
Arxiv
0+阅读 · 2022年9月16日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员