The Synchronic Web is a distributed network for securing data provenance on the World Wide Web. By enabling clients around the world to freely commit digital information into a single shared view of history, it provides a foundational basis of truth on which to build decentralized and scalable trust across the Internet. Its core cryptographical capability allows mutually distrusting parties to create and verify statements of the following form: "I commit to this information--and only this information--at this moment in time." The backbone of the Synchronic Web infrastructure is a simple, small, and semantic-free blockchain that is accessible to any Internet-enabled entity. The infrastructure is maintained by a permissioned network of well-known servers, called notaries, and accessed by a permissionless group of clients, called ledgers. Through an evolving stack of flexible and composable semantic specifications, the parties cooperate to generate synchronic commitments over arbitrary data. When integrated with existing infrastructures, adapted to diverse domains, and scaled across the breadth of cyberspace, the Synchronic Web provides a ubiquitous mechanism to lock the world's data into unique points in discrete time and digital space.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
12+阅读 · 2018年1月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员