We propose an algorithm to (i) learn online a deep signed distance function (SDF) with a LiDAR-equipped robot to represent the 3D environment geometry, and (ii) plan collision-free trajectories given this deep learned map. Our algorithm takes a stream of incoming LiDAR scans and continually optimizes a neural network to represent the SDF of the environment around its current vicinity. When the SDF network quality saturates, we cache a copy of the network, along with a learned confidence metric, and initialize a new SDF network to continue mapping new regions of the environment. We then concatenate all the cached local SDFs through a confidence-weighted scheme to give a global SDF for planning. For planning, we make use of a sequential convex model predictive control (MPC) algorithm. The MPC planner optimizes a dynamically feasible trajectory for the robot while enforcing no collisions with obstacles mapped in the global SDF. We show that our online mapping algorithm produces higher-quality maps than existing methods for online SDF training. In the WeBots simulator, we further showcase the combined mapper and planner running online -- navigating autonomously and without collisions in an unknown environment.
翻译:我们提出一个算法,用于(一) 在线学习一个由 LiDAR 装备的机器人的深度签名距离功能(SDF), 以代表 3D 环境几何学, 并(二) 计划一个不发生碰撞的轨迹。 我们的算法将进入的LiDAR 扫描流流进行, 并持续优化神经网络网络, 以代表当前周围环境的 SDF 。 当 SDF 网络质量饱和度值时, 我们隐藏网络的复制件, 并附上一个学习的信赖度量度, 并启动一个新的 SDF 网络, 以继续绘制环境新区域的地图 。 然后, 我们通过一个信任加权计划将所有隐藏的本地 SDFD 连接起来, 给全球 SDF 进行规划 。 为了规划, 我们使用一个连续的 conveux 模型预测控制(MPC) 算法, 并不断优化机器人的动态可行的轨迹, 同时不与全球 SDF 所绘制的障碍相撞。 我们显示我们的在线绘图算算算算算法比现有的SDF 方法质量更高。 在 WeBotbats 上, 我们进一步展示一个不为不为不为未知的地图和连续的地图环境 。