Foundation models are transforming Earth observation, but their potential for hyperspectral crop mapping remains underexplored. This study benchmarks three foundation models for cereal crop mapping using hyperspectral imagery: HyperSigma, DOFA, and Vision Transformers pre-trained on the SpectralEarth dataset (a large multitemporal hyperspectral archive). Models were fine-tuned on manually labeled data from a training region and evaluated on an independent test region. Performance was measured with overall accuracy (OA), average accuracy (AA), and F1-score. HyperSigma achieved an OA of 34.5% (+/- 1.8%), DOFA reached 62.6% (+/- 3.5%), and the SpectralEarth model achieved an OA of 93.5% (+/- 0.8%). A compact SpectralEarth variant trained from scratch achieved 91%, highlighting the importance of model architecture for strong generalization across geographic regions and sensor platforms. These results provide a systematic evaluation of foundation models for operational hyperspectral crop mapping and outline directions for future model development.
翻译:暂无翻译