In this paper, we develop a new technique which we call representation theory of the real hyperrectangle, which describes how to compute the eigenvectors and eigenvalues of certain matrices arising from hyperrectangles. We show that these matrices arise naturally when analyzing a number of different algorithmic tasks such as kernel methods, neural network training, natural language processing, and the design of algorithms using the polynomial method. We then use our new technique along with these connections to prove several new structural results in these areas, including: $\bullet$ A function is a positive definite Manhattan kernel if and only if it is a completely monotone function. These kernels are widely used across machine learning; one example is the Laplace kernel which is widely used in machine learning for chemistry. $\bullet$ A function transforms Manhattan distances to Manhattan distances if and only if it is a Bernstein function. This completes the theory of Manhattan to Manhattan metric transforms initiated by Assouad in 1980. $\bullet$ A function applied entry-wise to any square matrix of rank $r$ always results in a matrix of rank $< 2^{r-1}$ if and only if it is a polynomial of sufficiently low degree. This gives a converse to a key lemma used by the polynomial method in algorithm design. Our work includes a sophisticated combination of techniques from different fields, including metric embeddings, the polynomial method, and group representation theory.


翻译:在本文中, 我们开发了一种新技术, 我们称之为真实超矩的演示理论, 我们称之为超矩的演示理论, 描述如何计算超矩产生的某些矩阵的元素源数和值值。 我们显示这些矩阵在分析一系列不同的算法任务时自然产生, 例如内核方法、 神经网络培训、 自然语言处理, 以及使用多式方法的算法设计。 然后我们使用我们的新技术以及这些连接来证明这些领域的一些新的结构结果, 包括: $\bullet$ A 函数是一个肯定的曼哈顿内核内核, 如果它是一个完全的单调函数。 这些内核在机器学习中被广泛使用; 一个例子是用于机器化学学习的Laplace内核。 $bullet A 函数将曼哈顿距离转换为曼哈顿距离, 如果是伯恩斯坦函数, 则完成曼哈顿至曼哈顿内基体变的组合理论, 包括: $bulletlet 美元 A 内核内基数, 如果它使用一个低基数的内基质的内基数, $_ 直数, 也只能用于任何平方基矩阵。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Row-clustering of a Point Process-valued Matrix
Arxiv
0+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年7月26日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员