Practical quantum computing is rapidly becoming a reality. To harness quantum computers' real potential in software applications, one needs to have an in-depth understanding of all such characteristics of quantum computing platforms (QCPs), relevant from the Software Engineering (SE) perspective. Restrictions on copying, deletion, the transmission of qubit states, a hard dependency on quantum algorithms are few, out of many, examples of QCP characteristics that have significant implications for building quantum software. Thus, developing quantum software requires a paradigm shift in thinking by software engineers. This paper presents the key findings from the SE perspective, resulting from an in-depth examination of state-of-the-art QCPs available today. The main contributions that we present include i) Proposing a general architecture of the QCPs, ii) Proposing a programming model for developing quantum software, iii) Determining architecturally significant characteristics of QCPs, and \textbf{iv)} Determining the impact of these characteristics on various Quality Attributes (QAs) and Software Development Life Cycle (SDLC) activities. We show that the nature of QCPs makes them useful mainly in specialized application areas such as scientific computing. Except for performance and scalability, most of the other QAs (e.g., maintainability, testability, and reliability) are adversely affected by different characteristics of a QCP.


翻译:实际量子计算正在迅速成为现实。为了利用量子计算机在软件应用中的真正潜力,人们需要从软件工程的角度深入了解量子计算平台(QCPs)的所有这些特点,从软件工程的角度看,这与软件工程(SE)相关。对于复制、删除、传输qubit States、严格依赖量子算法的限制在很多案例中是少有的,而对于量子软件的建设具有重大影响的量子计算方法特征的例子中则很少有。因此,开发量子软件要求软件工程师在思维上进行范式转变。本文件从SE的角度介绍对当今现有最新QCPs进行深入审查得出的关键结果。我们介绍的主要贡献包括:(a) 提出QCPs的总体结构,二) 提出开发量子计算软件的方案编制模式,三) 确定量子计算机对量子计算具有重大影响的建筑学特性,以及\ textbf{iv}确定这些特性对各种质量属性(QAs)和软件开发生命周期(SDLC)活动的影响。我们所介绍的主要贡献包括:QCPs的特性性质、可变性、可变性测试性、其他可达性、可达性、可达性、可达性、可达性、可达性、可达性。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Data lake concept and systems: a survey
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员