The accuracy of multiphysics simulations is strongly contingent up on the finest resolution of mesh used to resolve the interface. However, the increased resolution comes at a cost of inverting a larger matrix size. In this work, we propose algorithmic advances that aims to reduce the computational cost without compromising on the physics by selectively detecting the key regions of interest (droplets/filaments) that requires significantly higher resolution. The overall framework uses an adaptive octree-based mesh generator, which is integrated with PETSc's linear algebra solver. We demonstrate the scaling of the framework up to 114,688 processes on TACC Frontera. Finally we deploy the framework to simulate primary jet atomization on an \textit{equivalent} 35 trillion grid points - 64$\times$ greater than the state-of-the-art simulations.
翻译:多物理模拟的准确性在很大程度上取决于用于解决界面的网格的最佳分辨率。 但是,增加的分辨率是以反向一个更大的矩阵大小为代价的。 在这项工作中,我们提出算法进步,目的是通过有选择地探测需要更高分辨率的关键利益区域(小滴/丝片)来降低计算成本而不损害物理学。整个框架使用适应性的以树为基础的网格生成器,它与PETSC的线性代数求解器相融合。我们展示了框架的扩大,在TACC Frontera 上达到114,688个进程。最后,我们运用这一框架,在\textit{等值} 35万亿个网格点上模拟主要喷气式消化,比最先进的模拟值高出64美元。