Global model-agnostic feature importance measures either quantify whether features are directly used for a model's predictions (direct importance) or whether they contain prediction-relevant information (associative importance). Direct importance provides causal insight into the model's mechanism, yet it fails to expose the leakage of information from associated but not directly used variables. In contrast, associative importance exposes information leakage but does not provide causal insight into the model's mechanism. We introduce DEDACT - a framework to decompose well-established direct and associative importance measures into their respective associative and direct components. DEDACT provides insight into both the sources of prediction-relevant information in the data and the direct and indirect feature pathways by which the information enters the model. We demonstrate the method's usefulness on simulated examples.
翻译:全球模型 -- -- 不可知性特征重要性衡量标准要么量化特征是否直接用于模型预测(直接重要性),要么量化特征是否包含与预测有关的信息(共同重要性)。直接重要性为模型机制提供了因果洞察,但未能揭示相关但非直接使用的变量所泄漏的信息。相反,关联重要性暴露了信息泄漏,但没有为模型机制提供因果洞察。我们引入了DEDACT -- -- 一个将既定的直接和关联重要性措施分解为各自关联和直接组成部分的框架。DEDACT提供了对数据中与预测有关的信息来源以及信息进入模型的直接和间接特征途径的深入了解。我们展示了该方法对模拟示例的有用性。