We employ techniques from group theory to show that, in many cases, counting problems on graphs are almost as hard to solve in a small number of instances as they are in all instances. Specifically, we show the following results. 1. Goldreich (2020) asks if, for every constant $\delta < 1 / 2$, there is an $\tilde{O} \left( n^2 \right)$-time randomized reduction from computing the number of $k$-cliques modulo $2$ with a success probability of greater than $2 / 3$ to computing the number of $k$-cliques modulo $2$ with an error probability of at most $\delta$. In this work, we show that for almost all choices of the $\delta 2^{n \choose 2}$ corrupt answers within the average-case solver, we have a reduction taking $\tilde{O} \left( n^2 \right)$-time and tolerating an error probability of $\delta$ in the average-case solver for any constant $\delta < 1 / 2$. By "almost all", we mean that if we choose, with equal probability, any subset $S \subset \{0,1\}^{n \choose 2}$ with $|S| = \delta2^{n \choose 2}$, then with a probability of $1-2^{-\Omega \left( n^2 \right)}$, we can use an average-case solver corrupt on $S$ to obtain a probabilistic algorithm. 2. Inspired by the work of Goldreich and Rothblum in FOCS 2018 to take the weighted versions of the graph counting problems, we prove that if the RETH is true, then for a prime $p = \Theta \left( 2^n \right)$, the problem of counting the number of unique Hamiltonian cycles modulo $p$ on $n$-vertex directed multigraphs and the problem of counting the number of unique half-cliques modulo $p$ on $n$-vertex undirected multigraphs, both require exponential time to compute correctly on even a $1 / 2^{n/\log n}$-fraction of instances. Meanwhile, simply printing $0$ on all inputs is correct on at least a $\Omega \left( 1 / 2^n \right)$-fraction of instances.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
31+阅读 · 2021年6月30日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员