This paper explores Artificial Neural Network (ANN) as a model-free solution for a calibration algorithm of option pricing models. We construct ANNs to calibrate parameters for two well-known GARCH-type option pricing models: Duan's GARCH and the classical tempered stable GARCH that significantly improve upon the limitation of the Black-Scholes model but have suffered from computation complexity. To mitigate this technical difficulty, we train ANNs with a dataset generated by Monte Carlo Simulation (MCS) method and apply them to calibrate optimal parameters. The performance results indicate that the ANN approach consistently outperforms MCS and takes advantage of faster computation times once trained. The Greeks of options are also discussed.


翻译:本文探讨了人造神经网络(ANN)作为选项定价模型校准算法的无模式解决方案。我们建造了ANN,用于校准两个众所周知的GARCH型选项定价模型的参数:Duan的GARCH和古典的温和稳定的GRCH,这两个模型大大改进了黑雪模型的局限性,但又受到计算复杂性的影响。为了减轻这一技术困难,我们用蒙特卡洛模拟(MCS)方法生成的数据集对ANN进行了培训,并将其用于校准最佳参数。性能结果显示,ANN方法始终优于MSS,在培训后利用更快的计算时间。还讨论了各种选项的希腊人。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员