We propose Mirror Descent Optimal Transport (MDOT), a novel method for solving discrete optimal transport (OT) problems with high precision, by unifying temperature annealing in entropic-regularized OT (EOT) with mirror descent techniques. In this framework, temperature annealing produces a sequence of EOT dual problems, whose solution gradually gets closer to the solution of the original OT problem. We solve each problem efficiently using a GPU-parallel nonlinear conjugate gradients algorithm (PNCG) that outperforms traditional Sinkhorn iterations under weak regularization. Moreover, our investigation also reveals that the theoretical convergence rate of Sinkhorn iterations can exceed existing non-asymptotic bounds when its stopping criterion is tuned in a manner analogous to MDOT. Our comprehensive ablation studies of MDOT-PNCG affirm its robustness across a wide range of algorithmic parameters. Benchmarking on 24 problem sets of size $n=4096$ in a GPU environment demonstrate that our method attains high-precision, feasible solutions significantly faster than a representative set of existing OT solvers (including accelerated gradient methods and advanced Sinkhorn variants) in both wall-clock time and number of operations. Empirical convergence rates range between $O(n^2 \varepsilon^{-1/4})$ and $O(n^2 \varepsilon^{-1})$, where $\varepsilon$ is the optimality gap. For problem sizes up to ${n=16,384}$, the empirical runtime scales as $\widetilde{O}(n^2)$ for moderate precision and as $\widetilde{O}(n^{5/2})$ at worst for high precision. These findings establish MDOT-PNCG as a compelling alternative to current OT solvers, particularly in challenging weak-regularization regimes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员