I develop a comprehensive theoretical framework for dynamic spatial treatment effect boundaries using continuous functional definitions grounded in Navier-Stokes partial differential equations. Rather than discrete treatment effect estimators, the framework characterizes treatment intensity as a continuous function $\tau(\mathbf{x}, t)$ over space-time, enabling rigorous analysis of propagation dynamics, boundary evolution, and cumulative exposure patterns. Building on exact self-similar solutions expressible through Kummer confluent hypergeometric and modified Bessel functions, I establish that treatment effects follow scaling laws $\tau(d, t) = t^{-\alpha} f(d/t^\beta)$ where exponents characterize diffusion mechanisms. Empirical validation using 42 million TROPOMI satellite observations of NO$_2$ pollution from U.S. coal-fired power plants demonstrates strong exponential spatial decay ($\kappa_s = 0.004$ per km, $R^2 = 0.35$) with detectable boundaries at 572 km. Monte Carlo simulations confirm superior performance over discrete parametric methods in boundary detection and false positive avoidance (94\% vs 27\% correct rejection). Regional heterogeneity analysis validates diagnostic capability: positive decay parameters within 100 km confirm coal plant dominance; negative parameters beyond 100 km correctly signal when urban sources dominate. The continuous functional perspective unifies spatial econometrics with mathematical physics, providing theoretically grounded methods for boundary detection, exposure quantification, and policy evaluation across environmental economics, banking, and healthcare applications.
翻译:暂无翻译