In this work, we develop and study an empirical projection operator scheme for solving nonparametric regression problems. This scheme is based on an approximate projection of the regression function over a suitable reproducing kernel Hilbert space (RKHS). The RKHS considered in this paper are generated by the Mercer kernels given by the Legendre Christoffel-Darboux and convolution Sinc kernels. We provide error and convergence analysis of the proposed scheme under the assumption that the regression function belongs to some suitable functional spaces. We also consider the popular RKHS regularized least square minimization for nonparametric regression. In particular, we check the numerical stability of this second scheme and we provide its convergence rate in the special case of the Sinc kernel. Finally, we illustrate the proposed methods by various numerical simulation.


翻译:在这项工作中,我们制定并研究一个解决非参数回归问题的实证预测操作员计划,这个计划的基础是对适当复制的内核Hilbert空间(RKHS)的回归功能的大致预测,本文中考虑的RKHS是由Tulturre Christoffel-Darboux和 Convolution Sinc内核提供的Mercer内核生成的。我们根据回归功能属于某些适当功能空间的假设,对拟议的计划提供错误和趋同分析。我们还考虑到流行的RKHS对非参数回归的正规化最低平方最小化。特别是,我们检查第二个方案的数字稳定性,并在Sinc内核的特殊情况下提供其趋同率。最后,我们用各种数字模拟来说明拟议的方法。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年3月19日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员