Similarity/Distance measures play a key role in many machine learning, pattern recognition, and data mining algorithms, which leads to the emergence of metric learning field. Many metric learning algorithms learn a global distance function from data that satisfy the constraints of the problem. However, in many real-world datasets that the discrimination power of features varies in the different regions of input space, a global metric is often unable to capture the complexity of the task. To address this challenge, local metric learning methods are proposed that learn multiple metrics across the different regions of input space. Some advantages of these methods are high flexibility and the ability to learn a nonlinear mapping but typically achieves at the expense of higher time requirement and overfitting problem. To overcome these challenges, this research presents an online multiple metric learning framework. Each metric in the proposed framework is composed of a global and a local component learned simultaneously. Adding a global component to a local metric efficiently reduce the problem of overfitting. The proposed framework is also scalable with both sample size and the dimension of input data. To the best of our knowledge, this is the first local online similarity/distance learning framework based on PA (Passive/Aggressive). In addition, for scalability with the dimension of input data, DRP (Dual Random Projection) is extended for local online learning in the present work. It enables our methods to be run efficiently on high-dimensional datasets, while maintains their predictive performance. The proposed framework provides a straightforward local extension to any global online similarity/distance learning algorithm based on PA.

5
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。

Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, "meta" refers to training multiple tasks, and "transfer" is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.

0
6
下载
预览

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

0
9
下载
预览

Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.

0
8
下载
预览

With the development of deep learning, Deep Metric Learning (DML) has achieved great improvements in face recognition. Specifically, the widely used softmax loss in the training process often bring large intra-class variations, and feature normalization is only exploited in the testing process to compute the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and weight vectors in softmax loss larger than a margin in the training step, and extend it from four aspects. First, we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraint to force the intra-class cosine similarity larger than the mean inter-class cosine similarity with a margin in the exponential feature projection space. Extensive experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and IARPA Janus Benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream DML methods and approach the state-of-the-art performance.

0
4
下载
预览

Clustering and classification critically rely on distance metrics that provide meaningful comparisons between data points. We present mixed-integer optimization approaches to find optimal distance metrics that generalize the Mahalanobis metric extensively studied in the literature. Additionally, we generalize and improve upon leading methods by removing reliance on pre-designated "target neighbors," "triplets," and "similarity pairs." Another salient feature of our method is its ability to enable active learning by recommending precise regions to sample after an optimal metric is computed to improve classification performance. This targeted acquisition can significantly reduce computational burden by ensuring training data completeness, representativeness, and economy. We demonstrate classification and computational performance of the algorithms through several simple and intuitive examples, followed by results on real image and medical datasets.

0
8
下载
预览

Deep distance metric learning (DDML), which is proposed to learn image similarity metrics in an end-to-end manner based on the convolution neural network, has achieved encouraging results in many computer vision tasks.$L2$-normalization in the embedding space has been used to improve the performance of several DDML methods. However, the commonly used Euclidean distance is no longer an accurate metric for $L2$-normalized embedding space, i.e., a hyper-sphere. Another challenge of current DDML methods is that their loss functions are usually based on rigid data formats, such as the triplet tuple. Thus, an extra process is needed to prepare data in specific formats. In addition, their losses are obtained from a limited number of samples, which leads to a lack of the global view of the embedding space. In this paper, we replace the Euclidean distance with the cosine similarity to better utilize the $L2$-normalization, which is able to attenuate the curse of dimensionality. More specifically, a novel loss function based on the von Mises-Fisher distribution is proposed to learn a compact hyper-spherical embedding space. Moreover, a new efficient learning algorithm is developed to better capture the global structure of the embedding space. Experiments for both classification and retrieval tasks on several standard datasets show that our method achieves state-of-the-art performance with a simpler training procedure. Furthermore, we demonstrate that, even with a small number of convolutional layers, our model can still obtain significantly better classification performance than the widely used softmax loss.

0
6
下载
预览

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.

0
3
下载
预览

In this paper, a novel video classification methodology is presented that aims to recognize different categories of third-person videos efficiently. The idea is to keep track of motion in videos by following optical flow elements over time. To classify the resulted motion time series efficiently, the idea is letting the machine to learn temporal features along the time dimension. This is done by training a multi-channel one dimensional Convolutional Neural Network (1D-CNN). Since CNNs represent the input data hierarchically, high level features are obtained by further processing of features in lower level layers. As a result, in the case of time series, long-term temporal features are extracted from short-term ones. Besides, the superiority of the proposed method over most of the deep-learning based approaches is that we only try to learn representative temporal features along the time dimension. This reduces the number of learning parameters significantly which results in trainability of our method on even smaller datasets. It is illustrated that the proposed method could reach state-of-the-art results on two public datasets UCF11 and jHMDB with the aid of a more efficient feature vector representation.

0
4
下载
预览

We propose an attentive local feature descriptor suitable for large-scale image retrieval, referred to as DELF (DEep Local Feature). The new feature is based on convolutional neural networks, which are trained only with image-level annotations on a landmark image dataset. To identify semantically useful local features for image retrieval, we also propose an attention mechanism for keypoint selection, which shares most network layers with the descriptor. This framework can be used for image retrieval as a drop-in replacement for other keypoint detectors and descriptors, enabling more accurate feature matching and geometric verification. Our system produces reliable confidence scores to reject false positives---in particular, it is robust against queries that have no correct match in the database. To evaluate the proposed descriptor, we introduce a new large-scale dataset, referred to as Google-Landmarks dataset, which involves challenges in both database and query such as background clutter, partial occlusion, multiple landmarks, objects in variable scales, etc. We show that DELF outperforms the state-of-the-art global and local descriptors in the large-scale setting by significant margins. Code and dataset can be found at the project webpage: https://github.com/tensorflow/models/tree/master/research/delf .

0
3
下载
预览

Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.

0
7
下载
预览
小贴士
相关论文
Meta-Transfer Learning for Few-Shot Learning
Qianru Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
6+阅读 · 2018年12月6日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
9+阅读 · 2018年7月8日
Wenbin Li,Jing Huo,Yinghuan Shi,Yang Gao,Lei Wang,Jiebo Luo
8+阅读 · 2018年5月15日
Bowen Wu,Huaming Wu,Monica M. Y. Zhang
4+阅读 · 2018年5月1日
Krishnan Kumaran,Dimitri Papageorgiou,Yutong Chang,Minhan Li,Martin Takáč
8+阅读 · 2018年3月28日
Xuefei Zhe,Shifeng Chen,Hong Yan
6+阅读 · 2018年3月28日
Shaohui Liu,Yi Wei,Jiwen Lu,Jie Zhou
3+阅读 · 2018年3月27日
Ali Javidani,Ahmad Mahmoudi-Aznaveh
4+阅读 · 2018年3月14日
Hyeonwoo Noh,Andre Araujo,Jack Sim,Tobias Weyand,Bohyung Han
3+阅读 · 2018年2月3日
Duhyeon Bang,Hyunjung Shim
7+阅读 · 2018年1月28日
相关VIP内容
专知会员服务
15+阅读 · 2020年4月28日
专知会员服务
86+阅读 · 2020年3月18日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
13+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
8+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
24+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员