For conforming finite element approximations of the Laplacian eigenfunctions, a fully computable guaranteed error bound in the $L^2$ norm sense is proposed. The bound is based on the a priori error estimate for the Galerkin projection of the conforming finite element method, and has an optimal speed of convergence for the eigenfunctions with the worst regularity. The resulting error estimate bounds the distance of spaces of exact and approximate eigenfunctions and, hence, is robust even in the case of multiple and tightly clustered eigenvalues. The accuracy of the proposed bound is illustrated by numerical examples. The demonstration code is available at https://ganjin.online/xfliu/EigenfunctionEstimation4FEM .
翻译:对于符合 Laplacian egenconditions 的有限元素近似值,提出了完全可计算、以$L $2 规范值约束的保证误差,该误差是根据对符合的限定元值方法的Galerkin预测的先验错误估计值得出的,对符合的有限元值与最差的常态具有最佳的趋同速度。由此得出的误差估计值将精确和近似电子元值空间的距离限制在一定范围内,因此,即使在多组和紧凑的双元值的情况下,也具有稳健性。提议的约束的准确性以数字示例说明。演示代码可在 https://ganjin.online/xfliu/EigencondictionEstimation4FEM 上查阅。