We present a general statistical methodology for analysing a Laguerre tessellation data set viewed as a realization of a marked point process model. In the first step, for the points we use a nested sequence of multiscale processes which constitute a flexible parametric class of pairwise interaction point process models. In the second step, for the marks/radii conditioned on the points we consider various exponential family models where the canonical sufficient statistic is based on tessellation characteristics. For each step parameter estimation based on maximum pseudolikelihood methods is tractable. Model checking is performed using global envelopes and corresponding tests in the first step and by comparing observed and simulated tessellation characteristics in the second step. We apply our methodology for a 3D Laguerre tessellation data set representing the microstructure of a polycrystalline metallic material, where simulations under a fitted model may substitute expensive laboratory experiments.
翻译:第一步,我们使用多尺度流程的嵌套序列,这些流程构成对称互动点流程模型的灵活参数类。第二步,我们考虑以各点为条件的标记/弧度模型,这些标记/弧度模型的指数式家庭模型中,光柱充分统计以熔化特性为基础。对于每个步骤参数,根据最大伪相似度方法的估算是可移动的。在第一步,利用全球信封和相应的测试进行模型检查,并在第二步比较观察到的和模拟的熔化特性。我们采用3D Laguerre 熔化数据集的方法,该数据集代表多晶体金属材料的微结构,根据安装模型进行的模拟可以替代昂贵的实验室实验。