The real-time dynamic environment perception has become vital for autonomous robots in crowded spaces. Although the popular voxel-based mapping methods can efficiently represent 3D obstacles with arbitrarily complex shapes, they can hardly distinguish between static and dynamic obstacles, leading to the limited performance of obstacle avoidance. While plenty of sophisticated learning-based dynamic obstacle detection algorithms exist in autonomous driving, the quadcopter's limited computation resources cannot achieve real-time performance using those approaches. To address these issues, we propose a real-time dynamic obstacle tracking and mapping system for quadcopter obstacle avoidance using an RGB-D camera. The proposed system first utilizes a depth image with an occupancy voxel map to generate potential dynamic obstacle regions as proposals. With the obstacle region proposals, the Kalman filter and our continuity filter are applied to track each dynamic obstacle. Finally, the environment-aware trajectory prediction method is proposed based on the Markov chain using the states of tracked dynamic obstacles. We implemented the proposed system with our custom quadcopter and navigation planner. The simulation and physical experiments show that our methods can successfully track and represent obstacles in dynamic environments in real-time and safely avoid obstacles.
翻译:实时动态环境认知对于拥挤空间的自主机器人至关重要。尽管流行的 voxel 绘图方法能够有效地代表任意复杂形状的三维障碍,但它们很难区分静态障碍和动态障碍,导致障碍的避免作用有限。虽然在自主驾驶中存在大量基于学习的动态动态障碍检测算法,但四氯四氯四氟甲烷有限的计算资源无法利用这些方法实现实时性能。为解决这些问题,我们提议了一个实时动态障碍跟踪和绘图系统,以便使用 RGB-D 相机来避免四氯四氟甲烷障碍。提议的系统首先使用带有占用式 voxel 地图的深度图像来产生潜在的动态障碍区域,作为建议。由于存在障碍区域提案,Kalman 过滤器和我们的连续性过滤器被用于跟踪每一个动态障碍。最后,根据Markov 链使用跟踪动态障碍的状态提出了环境观测轨迹预测方法。我们用定制的四氯四氯四氟甲烷和导航规划器实施了拟议的系统。模拟和物理实验表明,我们的方法可以成功地跟踪并代表实时和安全地避免障碍的动态环境中的障碍。