This paper studies quantized corrupted sensing where the measurements are contaminated by unknown corruption and then quantized by a dithered uniform quantizer. We establish uniform guarantees for Lasso that ensure the accurate recovery of all signals and corruptions using a single draw of the sub-Gaussian sensing matrix and uniform dither. For signal and corruption with structured priors (e.g., sparsity, low-rankness), our uniform error rate for constrained Lasso typically coincides with the non-uniform one [Sun, Cui and Liu, 2022] up to logarithmic factors. By contrast, our uniform error rate for unconstrained Lasso exhibits worse dependence on the structured parameters due to regularization parameters larger than the ones for non-uniform recovery. For signal and corruption living in the ranges of some Lipschitz continuous generative models (referred to as generative priors), we achieve uniform recovery via constrained Lasso with a measurement number proportional to the latent dimensions of the generative models. Our treatments to the two kinds of priors are (nearly) unified and share the common key ingredients of (global) quantized product embedding (QPE) property, which states that the dithered uniform quantization (universally) preserves inner product. As a by-product, our QPE result refines the one in [Xu and Jacques, 2020] under sub-Gaussian random matrix, and in this specific instance we are able to sharpen the uniform error decaying rate (for the projected-back projection estimator with signals in some convex symmetric set) presented therein from $O(m^{-1/16})$ to $O(m^{-1/8})$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员