Point clouds have the characteristics of disorder, unstructured and sparseness.Aiming at the problem of the non-structural nature of point clouds, thanks to the excellent performance of convolutional neural networks in image processing, one of the solutions is to extract features from point clouds based on two-dimensional convolutional neural networks. The three-dimensional information carried in the point cloud can be converted to two-dimensional, and then processed by a two-dimensional convolutional neural network, and finally back-projected to three-dimensional.In the process of projecting 3D information to 2D and back-projection, certain information loss will inevitably be caused to the point cloud and category inconsistency will be introduced in the back-projection stage;Another solution is the voxel-based point cloud segmentation method, which divides the point cloud into small grids one by one.However, the point cloud is sparse, and the direct use of 3D convolutional neural network inevitably wastes computing resources. In this paper, we propose a feature extraction module based on multi-scale ultra-sparse convolution and a feature selection module based on channel attention, and build a point cloud segmentation network framework based on this.By introducing multi-scale sparse convolution, network could capture richer feature information based on convolution kernels of different sizes, improving the segmentation result of point cloud segmentation.
翻译:点云具有混乱、非结构化和稀疏的特点。 点云的非结构性质问题,由于图像处理中的进化神经网络表现优异, 其中一个解决办法是利用二维的进化神经网络从点云中提取特征。 点云中携带的三维信息可以转换成二维, 然后由二维的进化神经网络处理, 最后又被回溯到三维。 在将点云信息投射到 2D 和 后投射到二维 的过程中, 某些信息损失将不可避免地导致点云和类别不一致, 将在回投阶段引入; 另一种解决办法是基于点云的点云点云分割法, 将点云分成一个小电网。 但是, 点云是稀疏的, 直接使用 3D 进化神经网络的不可避免浪费计算资源。 在本文中, 我们提出一个基于多级超进化的进化共进化的进化和进化分块的特征提取模块, 将基于频道的进化网络的进化分块, 构建一个基于多级的进化的进化网络的进化分块, 的进化的进化分块, 和进化的进化的进化的进化模型。