In this work, we provide non-asymptotic, probabilistic guarantees for successful recovery of the common nonzero support of jointly sparse Gaussian sources in the multiple measurement vector (MMV) problem. The support recovery problem is formulated as the marginalized maximum likelihood (or type-II ML) estimation of the variance hyperparameters of a joint sparsity inducing Gaussian prior on the source signals. We derive conditions under which the resulting nonconvex constrained optimization perfectly recovers the nonzero support of a joint-sparse Gaussian source ensemble with arbitrarily high probability. The support error probability decays exponentially with the number of MMVs at a rate that depends on the smallest restricted singular value and the nonnegative null space property of the self Khatri-Rao product of the sensing matrix. Our analysis confirms that nonzero supports of size as high as O($m^2$) are recoverable from $m$ measurements per sparse vector. Our derived sufficient conditions for support consistency of the proposed constrained type-II ML solution also guarantee the support consistency of any global solution of the multiple sparse Bayesian learning (M-SBL) optimization whose nonzero coefficients lie inside a bounded interval. For the case of noiseless measurements, we further show that a single MMV is sufficient for perfect recovery of the $k$-sparse support by M-SBL, provided all subsets of $k + 1$ columns of the sensing matrix are linearly independent.


翻译:在这项工作中,我们为在多种测量矢量(MMV)问题中成功恢复对共同稀释的高斯人源的共同非零支持提供了非保障、概率保障。支持性回收问题被表述为对联合孔径差导致高斯在源信号上之前对源代码信号的偏差超分度的边缘最大可能性估计(或II型ML),支持性回收问题被表述为:对联合稀释高斯源在多度矢量(MMMV)问题中共同稀释的非零支持的不可靠保障。支持性误差概率随着MMV数量以最小限制单值和感测矩阵中自Khatri-Rao产品非消极的无空间属性的快速最大可能性(或II型ML),我们的分析证实,O(m%2美元)等非零支持从每稀释矢量的测量中收回。我们推算出支持拟议受限制的二型高频混合源共合的矩阵解决方案的非零支持性支持性。支持性误差概率随着MMMMV数量激增的全球性解决方案的任何全球解决方案的一致度下降,而展示了MSBSBSBSB(M-SB-SB)的完整的完整的完整的精确度,以1号的精确度测试的完整的模型的完整的正确度为我们。

0
下载
关闭预览

相关内容

【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
44+阅读 · 2019年10月29日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员