We observe $n$ independent pairs of random variables $(W_{i}, Y_{i})$ for which the conditional distribution of $Y_{i}$ given $W_{i}=w_{i}$ belongs to a one-parameter exponential family with parameter ${\mathbf{\gamma}}^{*}(w_{i})\in{\mathbb{R}}$ and our aim is to estimate the regression function ${\mathbf{\gamma}}^{*}$. Our estimation strategy is as follows. We start with an arbitrary collection of piecewise constant candidate estimators based on our observations and by means of the same observations, we select an estimator among the collection. Our approach is agnostic to the dependencies of the candidate estimators with respect to the data and can therefore be unknown. From this point of view, our procedure contrasts with other alternative selection methods based on data splitting, cross validation, hold-out etc. To illustrate its theoretical performance, we establish a non-asymptotic risk bound for the selected estimator. We then explain how to apply our procedure to the changepoint detection problem in exponential families. The practical performance of the proposed algorithm is illustrated by a comparative simulation study under different scenarios and on two real datasets from the copy numbers of DNA and British coal disasters records.
翻译:我们观察的是一对独立的随机变量$(W),Y ⁇ i},Y ⁇ i}$(美元)美元,对于这些随机变量,我们观察的是美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)美元(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元(美元)(美元)(美元)(美元)(美元)(美元)(美元(美元)(美元)(美元)(美元(美元)(美元)(美元(美元(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)(美元)