Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.

6
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

0
22
下载
预览

Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

0
7
下载
预览

Although Recommender Systems have been comprehensively studied in the past decade both in industry and academia, most of current recommender systems suffer from the fol- lowing issues: 1) The data sparsity of the user-item matrix seriously affect the recommender system quality. As a result, most of traditional recommender system approaches are not able to deal with the users who have rated few items, which is known as cold start problem in recommender system. 2) Traditional recommender systems assume that users are in- dependently and identically distributed and ignore the social relation between users. However, in real life scenario, due to the exponential growth of social networking service, such as facebook and Twitter, social connections between different users play an significant role for recommender system task. In this work, aiming at providing a better recommender sys- tems by incorporating user social network information, we propose a matrix factorization framework with user social connection constraints. Experimental results on the real-life dataset shows that the proposed method performs signifi- cantly better than the state-of-the-art approaches in terms of MAE and RMSE, especially for the cold start users.

0
5
下载
预览

Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.

0
7
下载
预览

Movie recommendation systems provide users with ranked lists of movies based on individual's preferences and constraints. Two types of models are commonly used to generate ranking results: long-term models and session-based models. While long-term models represent the interactions between users and movies that are supposed to change slowly across time, session-based models encode the information of users' interests and changing dynamics of movies' attributes in short terms. In this paper, we propose an LSIC model, leveraging Long and Short-term Information in Content-aware movie recommendation using adversarial training. In the adversarial process, we train a generator as an agent of reinforcement learning which recommends the next movie to a user sequentially. We also train a discriminator which attempts to distinguish the generated list of movies from the real records. The poster information of movies is integrated to further improve the performance of movie recommendation, which is specifically essential when few ratings are available. The experiments demonstrate that the proposed model has robust superiority over competitors and sets the state-of-the-art. We will release the source code of this work after publication.

0
8
下载
预览

Images account for a significant part of user decisions in many application scenarios, such as product images in e-commerce, or user image posts in social networks. It is intuitive that user preferences on the visual patterns of image (e.g., hue, texture, color, etc) can be highly personalized, and this provides us with highly discriminative features to make personalized recommendations. Previous work that takes advantage of images for recommendation usually transforms the images into latent representation vectors, which are adopted by a recommendation component to assist personalized user/item profiling and recommendation. However, such vectors are hardly useful in terms of providing visual explanations to users about why a particular item is recommended, and thus weakens the explainability of recommendation systems. As a step towards explainable recommendation models, we propose visually explainable recommendation based on attentive neural networks to model the user attention on images, under the supervision of both implicit feedback and textual reviews. By this, we can not only provide recommendation results to the users, but also tell the users why an item is recommended by providing intuitive visual highlights in a personalized manner. Experimental results show that our models are not only able to improve the recommendation performance, but also can provide persuasive visual explanations for the users to take the recommendations.

0
7
下载
预览

This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by $6\%-7.5\%$ in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.

0
5
下载
预览

With the ever-growing volume, complexity and dynamicity of online information, recommender system has been an effective key solution to overcome such information overload. In recent years, deep learning's revolutionary advances in speech recognition, image analysis and natural language processing have gained significant attention. Meanwhile, recent studies also demonstrate its effectiveness in coping with information retrieval and recommendation tasks. Applying deep learning techniques into recommender system has been gaining momentum due to its state-of-the-art performances and high-quality recommendations. In contrast to traditional recommendation models, deep learning provides a better understanding of user's demands, item's characteristics and historical interactions between them. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems towards fostering innovations of recommender system research. A taxonomy of deep learning based recommendation models is presented and used to categorize the surveyed articles. Open problems are identified based on the analytics of the reviewed works and potential solutions discussed.

0
4
下载
预览

We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide $F_1$ scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.

0
7
下载
预览
小贴士
相关论文
Joost Verbraeken,Matthijs Wolting,Jonathan Katzy,Jeroen Kloppenburg,Tim Verbelen,Jan S. Rellermeyer
22+阅读 · 2019年12月20日
Hongwei Wang,Fuzheng Zhang,Miao Zhao,Wenjie Li,Xing Xie,Minyi Guo
12+阅读 · 2019年1月23日
Han Zhu,Xiang Li,Pengye Zhang,Guozheng Li,Jie He,Han Li,Kun Gai
7+阅读 · 2018年5月21日
Wenbin Li,Jing Huo,Yinghuan Shi,Yang Gao,Lei Wang,Jiebo Luo
7+阅读 · 2018年5月15日
Wei Zhao,Benyou Wang,Jianbo Ye,Min Yang,Zhou Zhao,Xiaojun Chen
8+阅读 · 2018年5月2日
Xu Chen,Yongfeng Zhang,Hongteng Xu,Yixin Cao,Zheng Qin,Hongyuan Zha
7+阅读 · 2018年1月31日
Yi Tay,Anh Tuan Luu,Siu Cheung Hui
5+阅读 · 2018年1月7日
Shuai Zhang,Lina Yao,Aixin Sun
4+阅读 · 2017年8月3日
Bryan Perozzi,Rami Al-Rfou,Steven Skiena
7+阅读 · 2014年6月27日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
6+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
9+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
5+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
4+阅读 · 2018年3月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top