Automatic molecule generation plays an important role on drug discovery and has received a great deal of attention in recent years thanks to deep learning successful use. Graph-based neural network represents state of the art methods on automatic molecule generation. However, it is still challenging to generate molecule with desired properties, which is a core task in drug discovery. In this paper, we focus on this task and propose a Controllable Junction Tree Variational Autoencoder (C JTVAE), adding an extractor module into VAE framework to describe some properties of molecule. Our method is able to generate similar molecular with desired property given an input molecule. Experimental results is encouraging.
翻译:自动分子生成在药物发现方面起着重要作用,并且近年来由于深层学习成功使用而引起极大关注。基于图表的神经网络代表了自动分子生成的先进方法。然而,生成具有预期特性的分子仍然是挑战,这是药物发现的一项核心任务。在本文中,我们集中关注这项任务并提出一个可控交叉树变异自动编码器(C JTVAE),在VAE框架中添加一个提取模块来描述分子的某些特性。我们的方法能够产生具有预期特性的类似分子,并带有输入分子。实验结果令人鼓舞。