Composition theorems are general and powerful tools that facilitate privacy accounting across multiple data accesses from per-access privacy bounds. However they often result in weaker bounds compared with end-to-end analysis. Two popular tools that mitigate that are the exponential mechanism (or report noisy max) and the sparse vector technique. They were generalized in a couple of recent private selection/test frameworks, including the work by Liu and Talwar (STOC 2019), and Papernot and Steinke (ICLR 2022). In this work, we first present an alternative framework for private selection and testing with a simpler privacy proof and equally-good utility guarantee. Second, we observe that the private selection framework (both previous ones and ours) can be applied to improve the accuracy/confidence trade-off for many fundamental privacy-preserving data-analysis tasks, including query releasing, top-$k$ selection, and stable selection. Finally, for online settings, we apply the private testing to design a mechanism for adaptive query releasing, which improves the sample complexity dependence on the confidence parameter for the celebrated private multiplicative weights algorithm of Hardt and Rothblum (FOCS 2010).


翻译:其构成是一般和强大的工具,便于从每个访问隐私圈的多个数据存取中进行隐私核算,但往往导致与端对端分析相比限制较弱。两种受欢迎的工具,即指数机制(或报告噪声最大)和稀疏矢量技术。它们在最近的几个私人选择/测试框架中被普遍采用,包括刘和塔尔瓦尔(STOC 2019)和Papernot和Steinke(ICLR 2022)的工作。在这项工作中,我们首先提出了一个私人选择和测试的替代框架,采用较简单的隐私证明和同等良好的公用事业保障。第二,我们观察到,私人选择框架(以前和我们)可以用来改进许多基本的保密数据分析任务的准确性/信任性交易,包括查询发布、最高至k$选择和稳定选择。最后,对于在线环境,我们应用私人测试来设计一个适应性查询释放机制,这提高了对庆祝硬和罗斯布卢的私人多倍重算算法(FOCS2010)的信任度参数的样本复杂性依赖度。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员