6D pose estimation of textureless objects is valuable for industrial robotic applications, yet remains challenging due to the frequent loss of depth information. Current multi-view methods either rely on depth data or insufficiently exploit multi-view geometric cues, limiting their performance. In this paper, we propose DKPMV, a pipeline that achieves dense keypoint-level fusion using only multi-view RGB images as input. We design a three-stage progressive pose optimization strategy that leverages dense multi-view keypoint geometry information. To enable effective dense keypoint fusion, we enhance the keypoint network with attentional aggregation and symmetry-aware training, improving prediction accuracy and resolving ambiguities on symmetric objects. Extensive experiments on the ROBI dataset demonstrate that DKPMV outperforms state-of-the-art multi-view RGB approaches and even surpasses the RGB-D methods in the majority of cases. The code will be available soon.
翻译:暂无翻译