Quantum Computing is a rapidly developing field with the potential to tackle the increasing computational challenges faced in high-energy physics. In this work, we explore the potential and limitations of variational quantum algorithms in solving the particle track reconstruction problem. We present an analysis of two distinct formulations for identifying straight-line tracks in a multilayer detection system, inspired by the LHCb vertex detector. The first approach is formulated as a ground-state energy problem, while the second approach is formulated as a system of linear equations. This work addresses one of the main challenges when dealing with variational quantum algorithms on general problems, namely designing an expressive and efficient quantum ansatz working on tracking events with fixed detector geometry. For this purpose, we employed a quantum architecture search method based on Monte Carlo Tree Search to design the quantum circuits for different problem sizes. We provide experimental results to test our approach on both formulations for different problem sizes in terms of performance and computational cost.


翻译:量子计算是一个快速发展的领域,具有应对高能物理中日益增长的计算挑战的潜力。在这项工作中,我们探讨了变分量子算法在解决粒子径迹重建问题中的潜力与局限性。我们提出了两种不同的方法,用于在多层探测系统中识别直线径迹,其灵感来源于LHCb顶点探测器。第一种方法被表述为基态能量问题,而第二种方法则被表述为线性方程组问题。本研究解决了在处理一般问题时使用变分量子算法所面临的主要挑战之一,即设计一种在固定探测器几何结构下对径迹事件具有表达力且高效的量子拟设。为此,我们采用了一种基于蒙特卡洛树搜索的量子架构搜索方法,为不同问题规模设计了量子电路。我们提供了实验结果,以测试我们在两种方法上针对不同问题规模在性能和计算成本方面的表现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员