This paper presents a comprehensive review of the design of experiments used in the surrogate models. In particular, this study demonstrates the necessity of the design of experiment schemes for the Physics-Informed Neural Network (PINN), which belongs to the supervised learning class. Many complex partial differential equations (PDEs) do not have any analytical solution; only numerical methods are used to solve the equations, which is computationally expensive. In recent decades, PINN has gained popularity as a replacement for numerical methods to reduce the computational budget. PINN uses physical information in the form of differential equations to enhance the performance of the neural networks. Though it works efficiently, the choice of the design of experiment scheme is important as the accuracy of the predicted responses using PINN depends on the training data. In this study, five different PDEs are used for numerical purposes, i.e., viscous Burger's equation, Shr\"{o}dinger equation, heat equation, Allen-Cahn equation, and Korteweg-de Vries equation. A comparative study is performed to establish the necessity of the selection of a DoE scheme. It is seen that the Hammersley sampling-based PINN performs better than other DoE sample strategies.
翻译:本文对替代模型中使用的实验设计进行了全面的审查,特别是,本研究报告表明有必要设计物理内成神经网络(PINN)的实验计划,该实验计划属于受监督的学习类。许多复杂的部分差异方程式(PDEs)没有任何分析解决办法;只有数字方法用于解算公式,而计算成本很高。近几十年来,PINN越来越受欢迎,以替代数字方法来减少计算预算。PINN以差异方程式的形式使用物理信息来提高神经网络的性能。尽管它有效,但选择实验方案的设计很重要,因为使用PINN的预测反应的准确性取决于培训数据。在本研究中,有五个不同的PDE用于数字目的,即布尔格尔的方程式、Shr\"{o}dinger方程式、热方程式、Allen-Cahn方程式和Kortewe-de Vrie方程式。进行了一项比较研究,以确定是否有必要选择一个比DASIMINE样式的PISL。