The objective of lifelong reinforcement learning (RL) is to optimize agents which can continuously adapt and interact in changing environments. However, current RL approaches fail drastically when environments are non-stationary and interactions are non-episodic. We propose Lifelong Skill Planning (LiSP), an algorithmic framework for non-episodic lifelong RL based on planning in an abstract space of higher-order skills. We learn the skills in an unsupervised manner using intrinsic rewards and plan over the learned skills using a learned dynamics model. Moreover, our framework permits skill discovery even from offline data, thereby reducing the need for excessive real-world interactions. We demonstrate empirically that LiSP successfully enables long-horizon planning and learns agents that can avoid catastrophic failures even in challenging non-stationary and non-episodic environments derived from gridworld and MuJoCo benchmarks.


翻译:终身强化学习(RL)的目标是优化能够在不断变化的环境中不断适应和互动的代理机构,然而,当环境非静止,互动非突发性时,目前的RL方法将严重失败。我们提出终身技能规划(LiSP),这是基于高阶技能抽象空间规划的非突发性终身学习的算法框架。我们以不受监督的方式学习技能,利用学习的动态模型,利用内在的奖赏和计划来取代学习的技能。此外,我们的框架允许技能发现,甚至从离线数据中发现,从而减少了对过度真实世界互动的需求。我们从经验上证明,LiSP成功地促成了长视规划,并学习了能够避免灾难性失败的代理机构,即使在挑战来自网格世界和MuJoCo基准的非静止和非突发性环境时也是如此。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
云栖社区
21+阅读 · 2019年4月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年2月8日
Arxiv
4+阅读 · 2020年1月17日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
128+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
云栖社区
21+阅读 · 2019年4月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员