Uncertainty quantification and robustness to distribution shifts are important goals in machine learning and artificial intelligence. Although Bayesian neural networks (BNNs) allow for uncertainty in the predictions to be assessed, different sources of uncertainty are indistinguishable. We present imprecise Bayesian neural networks (IBNNs); they generalize and overcome some of the drawbacks of standard BNNs. These latter are trained using a single prior and likelihood distributions, whereas IBNNs are trained using credal prior and likelihood sets. They allow to distinguish between aleatoric and epistemic uncertainties, and to quantify them. In addition, IBNNs are robust in the sense of Bayesian sensitivity analysis, and are more robust than BNNs to distribution shift. They can also be used to compute sets of outcomes that enjoy PAC-like properties. We apply IBNNs to two case studies. One, to model blood glucose and insulin dynamics for artificial pancreas control, and two, for motion prediction in autonomous driving scenarios. We show that IBNNs performs better when compared to an ensemble of BNNs benchmark.
翻译:机器学习和人工智能中的重要目标是对分布变化进行不确定的量化和稳健性。虽然贝耶斯神经网络(BNNs)允许对预测的不确定性进行评估,但不同的不确定性来源是无法区分的。我们介绍了不精确的巴伊西亚神经网络(BNNs);它们概括并克服了标准的BNNs的某些缺点。这些网络使用单一的先前和可能性分布方法进行培训,而IBNs则使用前方和可能性组合来培训,它们可以区分疏漏性和上位的不确定性,并量化这些不确定性。此外,从Bayesian敏感度分析的意义上讲,IBNNs是强大的,比BNNs更能进行分布转换。它们也可以用来对享受PAC类似特性的结果进行一系列的计算。我们用IBNNs对两个案例研究进行了应用。一,用于模拟血液胶囊和胰脏控制中的胰腺动态动态,二,用于自动驱动情景中的运动预测。我们显示,IBNNNs在比BNS基准时表现得更好。