Vertical federated learning is considered, where an active party, having access to true class labels, wishes to build a classification model by utilizing more features from a passive party, which has no access to the labels, to improve the model accuracy. In the prediction phase, with logistic regression as the classification model, several inference attack techniques are proposed that the adversary, i.e., the active party, can employ to reconstruct the passive party's features, regarded as sensitive information. These attacks, which are mainly based on a classical notion of the center of a set, i.e., the Chebyshev center, are shown to be superior to those proposed in the literature. Moreover, several theoretical performance guarantees are provided for the aforementioned attacks. Subsequently, we consider the minimum amount of information that the adversary needs to fully reconstruct the passive party's features. In particular, it is shown that when the passive party holds one feature, and the adversary is only aware of the signs of the parameters involved, it can perfectly reconstruct that feature when the number of predictions is large enough. Next, as a defense mechanism, a privacy-preserving scheme is proposed that worsen the adversary's reconstruction attacks, while preserving the full benefits that VFL brings to the active party. Finally, experimental results demonstrate the effectiveness of the proposed attacks and the privacy-preserving scheme.


翻译:考虑纵向联盟学习,如果一个活跃方能够接触到真正的阶级标签,希望通过利用被动方(无法接触标签)的更多特征来建立分类模型,以提高模型的准确性。在预测阶段,以后勤回归为分类模型,提出了几种推论攻击技术,即活跃方可以用来重建被动方特征,被视为敏感信息。这些攻击主要基于一套预测的中心(即Chebyshev中心)的经典概念,显示其优于文献中提议的内容。此外,为上述攻击提供了若干理论上的履约保证。随后,我们考虑了敌对方需要的最低限度信息,以充分重建被动方特征。具体地说,当被动方持有一个特征,而且敌对方只知道所涉参数的迹象时,当预测的数量足够大时,它可以完美地重建这一特征。下一个是,作为防御机制,为上述攻击提供了若干理论上的履约保证。随后,我们考虑了敌对方需要多少信息才能充分重建被动方特征。具体地表明,当被动方持有一个特征,而敌对方只知道所涉参数的迹象迹象时,当预测的数量足够大时,即Chebyshev中心,它可以完美地重建这一特征。 计划旨在维护隐私,然后提议使主动防御计划能够使敌对方的进攻最终显示持续计划的效果恶化。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员