This paper investigates the optimal signal detection problem with a particular interest in large-scale multiple-input multiple-output (MIMO) systems. The problem is NP-hard and can be solved optimally by searching the shortest path on the decision tree. Unfortunately, the existing optimal search algorithms often involve prohibitively high complexities, which indicates that they are infeasible in large-scale MIMO systems. To address this issue, we propose a general heuristic search algorithm, namely, hyperaccelerated tree search (HATS) algorithm. The proposed algorithm employs a deep neural network (DNN) to estimate the optimal heuristic, and then use the estimated heuristic to speed up the underlying memory-bounded search algorithm. This idea is inspired by the fact that the underlying heuristic search algorithm reaches the optimal efficiency with the optimal heuristic function. Simulation results show that the proposed algorithm reaches almost the optimal bit error rate (BER) performance in large-scale systems, while the memory size can be bounded. In the meanwhile, it visits nearly the fewest tree nodes. This indicates that the proposed algorithm reaches almost the optimal efficiency in practical scenarios, and thereby it is applicable for large-scale systems. Besides, the code for this paper is available at https://github.com/skypitcher/hats.


翻译:本文以对大型多投入多输出系统(MIMO)的特殊兴趣调查了最佳信号检测问题。 问题在于NP- 硬性, 并且可以通过搜索决策树上最短的路径来最佳解决。 不幸的是, 现有的最佳搜索算法往往涉及令人望而却步的复杂程度, 这表明在大型MIMO系统中这些算法是行不通的。 为了解决这一问题, 我们建议了一种普遍的超速树类搜索算法, 即超速树类搜索算法。 提议的算法使用一个深神经网络来估计最佳的树脂质, 然后使用估计的重力来加速基本的内存搜索算法。 这个想法受到以下事实的启发: 基本的超光学搜索算法在大型MIIMO系统中达到最佳效率。 模拟结果表明, 拟议的算法几乎达到了大型系统中最理想的点误差率( BER), 而记忆量则可以受约束。 与此同时, 它访问了近乎少数的树节点。 这说明拟议的算法在实际假设法中几乎达到了最佳的效率 。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
85+阅读 · 2020年5月11日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
112+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月15日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
85+阅读 · 2020年5月11日
专知会员服务
59+阅读 · 2020年3月19日
专知会员服务
112+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员