The RTS smoother is widely used for state estimation and it is utilized here to increase the data quality with respect to physical coherence and to increase resolution. The purpose of this paper is to enhance the performance of the RTS smoother to reconstruct an aircraft landing using on board recorded data only. Thereby, errors and uncertainties of operational flight data (e.g. altitude, attitude, position, speed) recorded during flights of civil aircraft are minimized. These data can be used for subsequent analyses in terms of flight safety or efficiency, which is commonly referred to as Flight Data Monitoring (FDM). Statistical assumptions of the smoother theory are not always verified during application but (consciously or not) assumed to be fulfilled. These assumptions can hardly be verified prior to the smoother application, however, they can be verified using the results of an initial smoother iteration and modifications of specific smoother characteristics can be suggested. This project specifically verifies assumptions on the measurement noise characteristics. Variance and covariance of the measurement noise can be checked after the initial smoother application. It is discovered that these characteristics change over time and should be accounted for with a time varying covariance matrix. This sequence of matrices is estimated by kernel smoothing and replaces an initially assumed fixed and diagonal covariance matrix used for the first smoother run. The results of this second smoother iteration are mostly improved compared to the initial iteration, i.e. the errors are significantly reduced. Subsequently, the remaining dependence structures of the residuals of the second smoother iteration can be captured by copula models. Their interpretation is useful for a revision of the physical model utilized by the RTS smoother.


翻译:运行飞行数据(如高度、姿态、位置、速度)的误差和不确定性被尽量小化。这些数据可用于随后在飞行安全或效率方面进行分析,通常称为飞行数据监测(FDM) 。在应用过程中,光滑理论的统计假设并不总是得到核实,但(有意识或没有)假定可以实现。这些假设很难在应用更平稳之前得到核实,然而,这些假设很难在使用更平稳的应用程序之前得到核实。可以提出操作飞行数据(如高度、姿态、位置、速度)的误差和不确定性最小化。这个项目具体核查测量噪音特性的假设。测量模型的变异性和效率通常被称作飞行数据监测(FDMM)。发现,光滑理论的统计假设在应用期间并非总能核实,而是(有意识或不意识地)假设要完成。这些假设很难在应用更平稳的应用程序之前得到核实,但是,这些假设是使用初步更平稳的基数。这个基数的序列可以用测序来测量测量测量噪音特性特性的假设。测量模型的变异性和测量模型在最初的精细后,可以被测测为测为测测算的基底。这种平基矩阵的测算是使用。这种平的基底的顺序是用测算的测算的平流的顺序是由测算。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月6日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员