We study a novel setting in offline reinforcement learning (RL) where a number of distributed machines jointly cooperate to solve the problem but only one single round of communication is allowed and there is a budget constraint on the total number of information (in terms of bits) that each machine can send out. For value function prediction in contextual bandits, and both episodic and non-episodic MDPs, we establish information-theoretic lower bounds on the minimax risk for distributed statistical estimators; this reveals the minimum amount of communication required by any offline RL algorithms. Specifically, for contextual bandits, we show that the number of bits must scale at least as $\Omega(AC)$ to match the centralised minimax optimal rate, where $A$ is the number of actions and $C$ is the context dimension; meanwhile, we reach similar results in the MDP settings. Furthermore, we develop learning algorithms based on least-squares estimates and Monte-Carlo return estimates and provide a sharp analysis showing that they can achieve optimal risk up to logarithmic factors. Additionally, we also show that temporal difference is unable to efficiently utilise information from all available devices under the single-round communication setting due to the initial bias of this method. To our best knowledge, this paper presents the first minimax lower bounds for distributed offline RL problems.


翻译:我们研究的是离线强化学习(RL)的新环境,在离线强化学习(RL)中,一些分布式机器共同合作解决问题,但只允许单轮通信,而且每个机器能够发送的信息总量(按位数计算)在预算上受到限制。对于背景土匪的价值函数预测,以及分数和非分数的 MDP,我们为分布式统计估计器在微缩最大风险上设定了信息理论下限;这显示了任何离线RL算法所需的最低通信量。具体地说,对于背景土匪,我们显示比特数的数量必须至少相当于$\Omega(AC),以与集中式微缩最大最佳速率匹配,其中$A是行动的数量,$是上下文层面;与此同时,我们在MDP设置中也取得了类似的结果。此外,我们开发了基于最小度估计值的学习算法和蒙特-卡洛返回估计值,并提供敏锐的分析,表明它们能够达到最优化的风险,直到对调因素。此外,我们展示了至少达到对调因素的最佳风险的比值比例,我们从最初的最小分析方法上展示了目前的最佳偏差的方法。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员