In this work, we present a number of generator matrices of the form $[I_{2n} \ | \ \tau_k(v)],$ where $I_{kn}$ is the $kn \times kn$ identity matrix, $v$ is an element in the group matrix ring $M_2(R)G$ and where $R$ is a finite commutative Frobenius ring and $G$ is a finite group of order 18. We employ these generator matrices and search for binary $[72,36,12]$ self-dual codes directly over the finite field $\mathbb{F}_2.$ As a result, we find 134 Type I and 1 Type II codes of this length, with parameters in their weight enumerators that were not known in the literature before. We tabulate all of our findings.


翻译:在这项工作中,我们提供了若干发件人表格($[I]%2n}\\\\tau_k(v)],美元是美元/乘以knkn],美元是美元/乘以kn美元的身份矩阵,美元是集团矩阵中的一个要素,M$-2(R)G美元环,R$是有限的杂质Frobenius环,$G美元是有限的顺序组18。 我们使用这些发件人汇总表,直接搜索有限字段的二元($72,36,12)]自用代码。结果,我们发现有134种I型和1种二型代码的长度,其重量参数在文献中不为人所知。我们用表格列出我们的所有调查结果。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月18日
Arxiv
0+阅读 · 2021年4月16日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年11月3日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【 关关的刷题日记47】Leetcode 38. Count and Say
【LeetCode 136】 关关的刷题日记32 Single Number
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员