In this work, we present a number of generator matrices of the form $[I_{2n} \ | \ \tau_k(v)],$ where $I_{kn}$ is the $kn \times kn$ identity matrix, $v$ is an element in the group matrix ring $M_2(R)G$ and where $R$ is a finite commutative Frobenius ring and $G$ is a finite group of order 18. We employ these generator matrices and search for binary $[72,36,12]$ self-dual codes directly over the finite field $\mathbb{F}_2.$ As a result, we find 134 Type I and 1 Type II codes of this length, with parameters in their weight enumerators that were not known in the literature before. We tabulate all of our findings.
翻译:在这项工作中,我们提供了若干发件人表格($[I]%2n}\\\\tau_k(v)],美元是美元/乘以knkn],美元是美元/乘以kn美元的身份矩阵,美元是集团矩阵中的一个要素,M$-2(R)G美元环,R$是有限的杂质Frobenius环,$G美元是有限的顺序组18。 我们使用这些发件人汇总表,直接搜索有限字段的二元($72,36,12)]自用代码。结果,我们发现有134种I型和1种二型代码的长度,其重量参数在文献中不为人所知。我们用表格列出我们的所有调查结果。