Classifying logo images is a challenging task as they contain elements such as text or shapes that can represent anything from known objects to abstract shapes. While the current state of the art for logo classification addresses the problem as a multi-class task focusing on a single characteristic, logos can have several simultaneous labels, such as different colors. This work proposes a method that allows visually similar logos to be classified and searched from a set of data according to their shape, color, commercial sector, semantics, general characteristics, or a combination of features selected by the user. Unlike previous approaches, the proposal employs a series of multi-label deep neural networks specialized in specific attributes and combines the obtained features to perform the similarity search. To delve into the classification system, different existing logo topologies are compared and some of their problems are analyzed, such as the incomplete labeling that trademark registration databases usually contain. The proposal is evaluated considering 76,000 logos (7 times more than previous approaches) from the European Union Trademarks dataset, which is organized hierarchically using the Vienna ontology. Overall, experimentation attains reliable quantitative and qualitative results, reducing the normalized average rank error of the state-of-the-art from 0.040 to 0.018 for the Trademark Image Retrieval task. Finally, given that the semantics of logos can often be subjective, graphic design students and professionals were surveyed. Results show that the proposed methodology provides better labeling than a human expert operator, improving the label ranking average precision from 0.53 to 0.68.


翻译:对标识图像进行分类是一项艰巨的任务,因为它们包含文本或形状等要素,能够代表已知物体的任何东西,从抽象形状到抽象形状。尽管当前标识分类的先进状态将问题作为一个多级任务来处理,但标识可以同时贴上多个标签,例如不同的颜色。这项工作提出一种方法,允许将视觉相似的标识根据其形状、颜色、商业部门、语义、一般特征或用户选择的特征组合从一组数据进行分类和搜索。与以往的做法不同,该提案采用了一系列具有特定属性的多标签深度神经网络,将获得的功能结合起来进行类似搜索。要进入分类系统,可以比较不同的现有标识表意,并分析其中的一些问题,例如商标登记数据库通常包含的不完整标签。对欧洲联盟商标数据集的76 000个标识(比以前的方法多七倍),或者对用户选择的特征组合。与以往的做法不同,该提案采用一系列方法,该提案采用了一系列专门处理特定属性的多标签深度深度神经网络,将获得的可靠定量和定性结果结合起来,用于进行相似性搜索。为了进入分类系统,对现有标识系统进行比较,现有的标识表级标准,现有的标定的标定的标定的标定标准,因此,可提供Sallievalalalal 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月10日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员