Fine-tuning large pre-trained models with task-specific data has achieved great success in NLP. However, it has been demonstrated that the majority of information within the self-attention networks is redundant and not utilized effectively during the fine-tuning stage. This leads to inferior results when generalizing the obtained models to out-of-domain distributions. To this end, we propose a simple yet effective data augmentation technique, HiddenCut, to better regularize the model and encourage it to learn more generalizable features. Specifically, contiguous spans within the hidden space are dynamically and strategically dropped during training. Experiments show that our HiddenCut method outperforms the state-of-the-art augmentation methods on the GLUE benchmark, and consistently exhibits superior generalization performances on out-of-distribution and challenging counterexamples. We have publicly released our code at https://github.com/GT-SALT/HiddenCut.


翻译:利用具体任务数据对经过培训的大型模型进行微调,在NLP中取得了巨大成功。然而,事实证明,自控网络中的大多数信息是多余的,在微调阶段没有被有效利用。这导致在将获得的模型推广到外域分布时结果较差。为此,我们提议采用简单而有效的数据增强技术,即HideCut,以更好地规范模型,鼓励它学习更通用的特征。具体地说,在培训期间,隐藏空间的毗连区域被动态地和战略性地删除。实验显示,我们的隐藏计算机方法超过了GLUE基准的先进增强方法,并一贯显示,在分配之外和具有挑战性的反抽样方面,我们一直在展示出优异性的一般性表现。我们在https://github.com/GT-SALT/HiddenCut上公开发布了我们的代码。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年9月5日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
325+阅读 · 2020年11月26日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员