Molecular dynamic simulations are important in computational physics, chemistry, material, and biology. Machine learning-based methods have shown strong abilities in predicting molecular energy and properties and are much faster than DFT calculations. Molecular energy is at least related to atoms, bonds, bond angles, torsion angles, and nonbonding atom pairs. Previous Transformer models only use atoms as inputs which lack explicit modeling of the aforementioned factors. To alleviate this limitation, we propose Moleformer, a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them using rotational and translational invariant geometry-aware spatial encoding. Proposed spatial encoding calculates relative position information including distances and angles among nodes and edges. We benchmark Moleformer on OC20 and QM9 datasets, and our model achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties compared to other Transformer and Graph Neural Network (GNN) methods which proves the effectiveness of the proposed geometry-aware spatial encoding in Moleformer.


翻译:分子动态模拟在计算物理学、化学、材料和生物学中非常重要。 机器学习方法在预测分子能量和特性方面表现出很强的能力,而且比DFT计算速度快得多。 分子能量至少与原子、 债券、 债券角度、 氧化角度 以及非原子对等有关。 以前的变压器模型仅将原子用作投入,而其中缺乏上述因素的明确模型。 为了减轻这一限制,我们提议Moleforold, 这是一种新型的变异器结构,它采用节点(原子)和边缘(骨骼和非蛋白原子配对)作为投入和模型,用旋转和翻译的变异几何- 觉空间编码来模拟它们之间的互动。 拟议的空间编码计算相对位置信息,包括节点和边缘之间的距离和角度。 我们以OC20 和 QM9 数据集为模型基准,我们模型在对OC20 和 QM9 数据集的初始状态进行节点预测,对OC20 和边缘的能源预测,而在QM9 中,在预测数字系统模型中,对地基质化的精确特性进行测试。

0
下载
关闭预览

相关内容

GitHub 发布的文本编辑器。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员